Abstract
As a harmless detection method, terahertz has become a new trend in security detection. However, there are inherent problems such as the low quality of the images collected by terahertz equipment and the insufficient detection accuracy of dangerous goods. This work advances BiFPN at the neck of YOLOv5 of the deep learning model as a mechanism to improve low resolution. We also perform transfer learning, thereby fine-tuning the pre-training weight of the backbone for migration learning in our model. Results from experimental analysis reveal that mAP@0.5 and mAP@0.5:0.95 values witness a percentage increase of 0.2% and 1.7%, respectively, attesting to the superiority of the proposed model to YOLOv5, which is the state-of-the-art model in object detection.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献