Estimating the Soil-Water Retention Curve of Arsenic-Contaminated Soil by Fitting Fuentes’ Model and Their Comparison with the Filter Paper Method

Author:

Vásquez-Nogal IsmaelORCID,Hernández-Mendoza Christian E.ORCID,Cárdenas-Robles Arely I.,Rojas-González Eduardo

Abstract

Arsenic is a metalloid frequently found in contaminated sites, especially in the soil. In this regard, soil contamination has attracted researchers’ attention because it affects soil suction, which is essential in unsaturated soil mechanics. Due to its reliability and low cost, the filter paper method is frequently used to evaluate soil suction. However, it is laborious and time consuming. As an alternative, different mathematical models have been developed to estimate natural soil’s suction. The objective of this study was to elucidate if Fuentes’ model (using fractal, Mualem, and Burdine restrictions) can be used to estimate the soil-water retention curve of an arsenic-contaminated soil by comparing it with the filter paper method data already reported. The results showed that under natural conditions, Fuentes’ model provided similar results to those obtained by the filter paper method. The model also suggested modification of the soil’s structure, observed by the increase in the soil’s particle diameter after contamination. However, Fuentes’ model was observed to overestimate the suction values for contaminated soils. This observation highlights the necessity to use a soil stabilization method to control the soil’s volume variations. The data also showed that Fuentes’ model overestimated the hydraulic conductivity function of the contaminated soil. Hence, the retention potential does not reflect the behavior of the contaminated soils and can induce misinterpretation of contaminant transport evaluation in soil. Nevertheless, further analyses should be performed to investigate the direct applicability of this model to soils contaminated with other substances.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Suelos Contaminados por Metales y Metaloides: Muestreo y Alternativas Para su Remediación,2005

2. Trace Elements from Soil to Human;Kabata-Pendias,2007

3. Heavy Metals in Soils From Intense Industrial Areas in South China: Spatial Distribution, Source Apportionment, and Risk Assessment

4. Contaminant transport in a largely-deformed aquitard affected by delayed drainage

5. Assessment of Heavy Metals Contamination in Soil;Saha,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3