Real-Time Semantic Understanding and Segmentation of Urban Scenes for Vehicle Visual Sensors by Optimized DCNN Algorithm

Author:

Li YanyiORCID,Shi Jian,Li YupingORCID

Abstract

The modern urban environment is becoming more and more complex. In helping us identify surrounding objects, vehicle vision sensors rely more on the semantic segmentation ability of deep learning networks. The performance of a semantic segmentation network is essential. This factor will directly affect the comprehensive level of driving assistance technology in road environment perception. However, the existing semantic segmentation network has a redundant structure, many parameters, and low operational efficiency. Therefore, to reduce the complexity of the network and reduce the number of parameters to improve the network efficiency, based on the deep learning (DL) theory, a method for efficient image semantic segmentation using Deep Convolutional Neural Network (DCNN) is deeply studied. First, the theoretical basis of the convolutional neural network (CNN) is briefly introduced, and the real-time semantic segmentation technology of urban scenes based on DCNN is recommended in detail. Second, the atrous convolution algorithm and the multi-scale parallel atrous spatial pyramid model are introduced. On the basis of this, an Efficient Symmetric Network (ESNet) of real-time semantic segmentation model for autonomous driving scenarios is proposed. The experimental results show that: (1) On the Cityscapes dataset, the ESNet structure achieves 70.7% segmentation accuracy for the 19 semantic categories set, and 87.4% for the seven large grouping categories. Compared with other algorithms, the accuracy has increased to varying degrees. (2) On the CamVid dataset, compared with segmentation networks of multiple lightweight real-time images, the parameters of the ESNet model are around 1.2 m, the highest FPS value is around 90 Hz, and the highest mIOU value is around 70%. In seven semantic categories, the segmentation accuracy of the ESNet model is the highest at around 98%. From this, we found that the ESNet significantly improves segmentation accuracy while maintaining faster forward inference speed. Overall, the research not only provides technical support for the development of real-time semantic understanding and segmentation of DCNN algorithms but also contributes to the development of artificial intelligence technology.

Funder

National Innovation Training Program for College Students

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3