Implementing a GIS-Based Digital Atlas of Agricultural Plastics to Reduce Their Environmental Footprint: Part II, an Inductive Approach

Author:

Cillis GiuseppeORCID,Statuto DinaORCID,Schettini EveliaORCID,Vox Giuliano,Picuno PietroORCID

Abstract

Plastic pollution, largely perceived by the public as a major risk factor that strongly impacts sea life and preservation, has an even higher negative impact on terrestrial ecosystems. Indeed, quantitative data about plastic contamination on agricultural soils are progressively emerging in alarming ways. One of the main contributors to this pollution involves the mismanagement of agricultural plastic waste (APW), i.e., the residues from plastic material used to improve the productivity of agricultural crops, such as greenhouse covers, mulching films, irrigation pipes, etc. Wrong management of agricultural plastics during and after their working lives may pollute the agricultural soil and aquifers by releasing macro-, micro-, and nanoplastics, which could also enter into the human food chain. In this study, we aimed to develop a methodology for the spatial quantification of agricultural plastics to achieve sustainable post-consumer management. Through an inductive approach, based on statistical data from the agricultural census of the administrative areas of the Italian provinces, an agricultural plastic coefficient (APC) was proposed, implemented, and spatialized in a GIS environment, to produce a database of APW for each type of crop. The proposed methodology can be exported to other countries. It represents valuable support that could realize, in integration with other tools, an atlas of agricultural plastics, which may be a starting point to plan strategies and actions targeted to the reduction of the plastic footprint of agriculture.

Funder

European Union

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. EU Soil Strategy for 2030, COM (2021) 699 Final https://ec.europa.eu/environment/publications/eu-soil-strategy-2030_en

2. The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals

3. A Soil Deal for Europe: Implementation Plan https://ec.europa.eu/info/sites/default/files/research_and_innovation/funding/documents/soil_mission_implementation_plan_final_for_publication.pdf

4. Assessment of agricultural plastics and their sustainability: A call for action

5. Plastic pollution in croplands threatens long‐term food security

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3