Prediction of the Elastic Properties of Ultra High Molecular-Weight Polyethylene Particle-Reinforced Polypropylene Composite Materials through Homogenization

Author:

Yun Jong-HwanORCID,Jeon Yu-Jae,Kang Min-SooORCID

Abstract

In this study, to improve the mechanical properties of polypropylene (PP) with the objective of developing a composite with ultra-high-molecular-weight polyethylene (UHMWPE) as a reinforcement, the mechanical properties of the composite material were investigated via numerical analysis and finite element analysis (FEA). Based on a mathematical approach, the modulus of elasticity, shear modulus, and Poisson’s ratio were calculated using a numerical model, and, through FEA with application of the homogenization method, the elastic properties were predicted, and the results were comparatively analyzed. In the future, it will be necessary to compare experimental and numerical analysis results to verify the findings of this study.

Funder

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea governmen

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3