From Biodeterioration to Creativity: Bioreceptivity of Spruce Pine 87 Glass Batch by Fungi

Author:

Rodrigues AlexandraORCID,Alves Margarida,Gutierrez-Patricio Sara,Miller Ana Z.,Macedo Maria FilomenaORCID

Abstract

The bioreceptivity, and the consequent biodeterioration of contemporary glass, used by artists worldwide, was studied. The two main objectives were: first, to verify if fungi with some culture media would produce more damages than the same fungi without a nutritional source, and to verify if the two genera of fungi produce the same damage on the same glass. Colourless glass samples with Spruce Pine 87 Batch (SPB-87) composition were inoculated with two distinct fungal species, Penicillium chrysogenum and Aspergillus niger, separately: (i) half with fungal spores (simulating primary bioreceptivity), and (ii) half with fungi in a small portion of culture media (simulating organic matter that can be deposited on exposed glassworks, i.e., secondary bioreceptivity). The alteration of glass surfaces were analysed by Optical Microscopy, SEM-EDS and µ-Raman. The mycelium of Penicillium chrysogenum generated a higher amount of fingerprints, stains and iridescence, whereas Aspergillus niger produced more biopitting and crystals on the glass surface. However, both species damaged the glass to different degrees in 4 and 6 months after the inoculation, producing physico-chemical damage (e.g., iridescence, biopitting), and chemical alterations (e.g., depletion and deposition of elements and crystals). The primary bioreceptivity experiment of glass samples inoculated with Aspergillus niger results in less damage than in the case of secondary bioreceptivity, being almost similar for Penicillium chrysogenum. The new and in-depth understanding of the bioreceptivity and deterioration of post-modern glass art and cultural heritage provided here is of paramount importance for the scientific, conservation and artistic communities—to protect glass cultural materials, or seen by artists as innovative and inspirational ways of creating glass art in the future.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3