Draw-a-Deep Pattern: Drawing Pattern-Based Smartphone User Authentication Based on Temporal Convolutional Neural Network

Author:

Kim Junhong,Kang Pilsung

Abstract

Present-day smartphones provide various conveniences, owing to high-end hardware specifications and advanced network technology. Consequently, people rely heavily on smartphones for a myriad of daily-life tasks, such as work scheduling, financial transactions, and social networking, which require a strong and robust user authentication mechanism to protect personal data and privacy. In this study, we propose draw-a-deep-pattern (DDP)—a deep learning-based end-to-end smartphone user authentication method using sequential data obtained from drawing a character or freestyle pattern on the smartphone touchscreen. In our model, a recurrent neural network (RNN) and a temporal convolution neural network (TCN), both of which are specialized in sequential data processing, are employed. The main advantages of the proposed DDP are (1) it is robust to the threats to which current authentication systems are vulnerable, e.g., shoulder surfing attack and smudge attack, and (2) it requires few parameters for training; therefore, the model can be consistently updated in real-time, whenever new training data are available. To verify the performance of the DDP model, we collected data from 40 participants in one of the most unfavorable environments possible, wherein all potential intruders know how the authorized users draw the characters or symbols (shape, direction, stroke, etc.) of the drawing pattern used for authentication. Of the two proposed DDP models, the TCN-based model yielded excellent authentication performance with average values of 0.99%, 1.41%, and 1.23% in terms of AUROC, FAR, and FRR, respectively. Furthermore, this model exhibited improved authentication performance and higher computational efficiency than the RNN-based model in most cases. To contribute to the research/industrial communities, we made our dataset publicly available, thereby allowing anyone studying or developing a behavioral biometric-based user authentication system to use our data without any restrictions.

Funder

National Research Foundation of Korea

Institute of Information & communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Analyzing International Collaboration and Identifying Core Topics for the “Internet of Things” Based on Network Analysis and Topic Modeling;Kim;Int. J. Ind. Eng.,2018

2. Recent advances in mobile touch screen security authentication methods: A systematic literature review

3. Beyond the PIN: Enhancing user authentication for mobile devices

4. Biometric-rich gestures: A novel approach to authentication on multi-touch devices;Sae-Bae;Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,2012

5. A novel classification-selection approach for the self updating of template-based face recognition systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3