Soil Erosion Assessment Using the RUSLE Model, Remote Sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran)

Author:

Allafta HadiORCID,Opp ChristianORCID

Abstract

In the Shatt Al-Arab basin, soil erosion is a major problem due to the steepness of the terrain and the significant difference in altitude between the upstream and downstream parts of the basin. Vast quantities of soil are moved annually, resulting in massive repercussions including soil degradation, structural damage, biodiversity loss, and productivity reduction in the catchment area, huge sediment load, and the pollution of streams and rivers. Consequently, the assessment of soil erosion risk and geographical distribution is essential for constructing a database for developing effective control strategies. Revised Universal Soil Loss Equation (RUSLE) was combined with Remote Sensing (RS) and Geographic Information System (GIS) in the current work to define the soil erosion hazard map in the Shatt Al-Arab basin. The RUSLE model included various characteristics for soil erosion zonation including rainfall erosivity, soil erodibility, slope length and steepness, land cover and management, and conservation support practices. Annual erosion rates in this study in tons per hectare were: extremely high (more than 50); very high (50 to 16.5); high (16.5 to 2.2); medium (2.2 to 1); and low (1 to 0) ton ha−1year−1 representing 16, 4, 13, 7, and 60 % of the basin’s area, respectively. The high soil loss rates are associated with heavy rainfall, loamy soil predominance, elevated terrains/plateau borders with a steep side slope, and intensive farming. Managers and policymakers may use the results of this study to implement adequate conservation programs to prevent soil erosion or recommend soil conservation acts if development projects are to proceed in places with a high soil erosion risk.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3