Performance Deterioration of Underground Culverts Considering the Effect of Dissolution and Its Impact on the Surrounding Soil

Author:

Zhang GuochenORCID,Xu Liqun,Chen Guanyun,Zhang WenbingORCID,Shen ZhenzhongORCID,Ju Luyi,Li Xiaocui

Abstract

To address the problem of dissolution damage during the long-term service of concrete hydraulic buildings, the concrete dissolution damage degree D and contact dissolution loss model with time were proposed by combining the results of indoor concrete dissolution tests. A mathematical model of the evolution of concrete parameters with time was developed. In the context of an underground concrete culvert project, a numerical analysis model of concrete dissolution deterioration was established, according to which the effects of different damage locations on the stress and displacement of concrete culverts were analyzed. The results show that the settlement value of the surface and the soil pore pressure value increase more when the bottom of the culvert is damaged by dissolution, and the settlement of the surface from the bottom damage is about 1.07~1.16 times of that from the top damage. When the damage position deviates from the center line of the culvert, the maximum point of vertical displacement in the transverse settlement trough of the ground surface deviates from the centerline of the culvert by about 3~5 m in the horizontal direction. At the bottom of the culvert, the concrete permeability coefficient reaches 6.957 × 10−8 m/s~8.354 × 10−8 m/s in about 13~16 years after the occurrence of dissolution damage, and local leakage occurs, causing a significant increase in the pore pressure of the soil near the leakage location. The overall settlement and uneven settlement resulting from the dual action of dissolution deterioration of concrete and infiltration pressure can have a serious impact on the upper channel buildings.

Funder

National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities Of HHU

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3