Conversion of Argan Nutshells into Novel Porous Carbons in the Scope of Circular Economy: Adsorption Performance of Emerging Contaminants

Author:

Mokhati AsmaORCID,Benturki Oumessaâd,Benturki Asma,Fennouh Radia,Kecira Zoubida,Bernardo MariaORCID,Matos Inês,Lapa NunoORCID,Ventura Márcia,Soares Olívia Salomé G. P.ORCID,Do Rego Ana M. BotelhoORCID,Fonseca Isabel

Abstract

The present work proposes an experimental strategy to prepare argan nutshell-derived porous carbons using potassium hydroxide (KOH). Several experimental parameters of the activation process were evaluated (temperature, impregnation ratio, and activation time), and an optimized carbon (ACK) was obtained. The surface properties of the ACK sample were determined, and the porous carbon was applied as an adsorbent of diclofenac (DCF) and paroxetine (PARX). A commercial carbon (CC) was used as a benchmark. The ACK porous carbon presented a higher surface area and micropore volume (1624 m2 g−1 and 0.40 cm3 g−1, respectively) than CC carbon (1030 m2 g−1 and 0.30 cm3 g−1, respectively), but the maximum adsorption capacities of DCF (214–217 mg g−1) and PARX (260–275 mg g−1) were comparable among the two carbons. Besides π-π interactions, H-bonds with the electronegative atoms of the adsorbate molecules and the electropositive H of the oxygen functional groups were appointed as the most probable mechanisms for adsorption onto ACK porous carbon. The electrostatic attraction was also considered, particularly for DCF with CC carbon. The pore size might have also been critical, since CC carbon presented more supermicropores (0.7–2 nm), which are usually more favorable toward the adsorption of pharmaceutical molecules. The reusability of the ACK carbon was tested up to four cycles of adsorption–desorption by using ultrasonic washing with water. The results indicated that no more than one cycle of use of ACK should be performed.

Funder

Algerian Ministry of Higher Education

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3