Single/Multi-Objective Optimization Design and Numerical Studies for Lead-to-Supercritical Carbon Dioxide Heat Exchanger Based on Genetic Algorithm

Author:

Li Liangxing,Zhao Haoxiang,Zhao Jiayuan,Li Xiangyu

Abstract

Single-/multi-objective optimization based on genetic algorithm is employed in the present study to conduct an optimization design for the primary heat exchanger (HE) in a lead-cooled fast reactor (LFR), where the liquid lead and supercritical carbon dioxide (SCO2) are the working fluids on the heat side and cold side of HE, respectively. A preliminary model of HE was first theoretically calculated by the subsection model based on equal heat transfer power, and an optimization design of HE was then performed based on genetic algorithm, where the entropy generation number and total pumping power were adopted as objective functions. Moreover, the numerical simulation based on Ansys-Fluent software was also performed to study the flow and heat transfer performances of working fluids in the optimized heat exchanger. The results show that the irreversible loss of HE is reduced by 25% after single-objective optimization. The heat transfer and hydraulic performance of optimized HE can be optimized together with multi-objective optimization based on a non-dominated sorting genetic algorithm II (NSGA-II). In addition, the field synergy angle of SCO2 decreases, which indicates the improvement on the comprehensive performance of HE. The present work is helpful for the design of a primary heat exchanger in LFR.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3