An Investigation on Radiomics Feature Handling for HNSCC Staging Classification

Author:

Brancati NadiaORCID,La Rosa Massimo,De Pietro GiuseppeORCID,Esposito GiusyORCID,Valentino Marika,Aiello Marco,Salvatore MarcoORCID

Abstract

The incidence of Head and Neck Squamous Cell Carcinoma (HNSCC) has been growing in the last few decades. Its diagnosis is usually performed through clinical evaluation and analyzing radiological images, then confirmed by histopathological examination, an invasive and time-consuming operation. The recent advances in the artificial intelligence field are leading to interesting results in the early diagnosis, personalized treatment and monitoring of HNSCC only by analyzing radiological images, without performing a tissue biopsy. The large amount of radiological images and the increasing interest in radiomics approaches can help to develop machine learning (ML) methods to support diagnosis. In this work, we propose an ML method based on the use of radiomics features, extracted from CT and PET images, to classify the disease in terms of pN-Stage, pT-Stage and Overall Stage. After the extraction of radiomics features, a selection step is performed to remove dataset redundancy. Finally, ML methods are employed to complete the classification task. Our pipeline is applied on the “Head-Neck-PET-CT” TCIA open-source dataset, considering a cohort of 201 patients from four different institutions. An AUC of 97%, 83% and 93% in terms of pN-Stage, pT-Stage and Overall Stage classification, respectively, is achieved. The obtained results are promising, showing the potential efficiency of the use of radiomics approaches in staging classification.

Funder

Technological Platform: eMORFORAD-Campania

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3