Structured Data Storage for Data-Driven Process Optimisation in Bioprinting

Author:

Schmieg Barbara,Brandt NicoORCID,Schnepp Vera J.,Radosevic Luka,Gretzinger Sarah,Selzer MichaelORCID,Hubbuch Jürgen

Abstract

Bioprinting is a method to fabricate 3D models that mimic tissue. Future fields of application might be in pharmaceutical or medical context. As the number of applicants might vary between only one patient to manufacturing tissue for high-throughput drug screening, designing a process will necessitate a high degree of flexibility, robustness, as well as comprehensive monitoring. To enable quality by design process optimisation for future application, establishing systematic data storage routines suitable for automated analytical tools is highly desirable as a first step. This manuscript introduces a workflow for process design, documentation within an electronic lab notebook and monitoring to supervise the product quality over time or at different locations. Lab notes, analytical data and corresponding metadata are stored in a systematic hierarchy within the research data infrastructure Kadi4Mat, which allows for continuous, flexible data structuring and access management. To support the experimental and analytical workflow, additional features were implemented to enhance and build upon the functionality provided by Kadi4Mat, including browser-based file previews and a Python tool for the combined filtering and extraction of data. The structured research data management with Kadi4Mat enables retrospective data grouping and usage by process analytical technology tools connecting individual analysis software to machine-readable data exchange formats.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3