AutoCloud+, a “Universal” Physical and Statistical Model-Based 2D Spatial Topology-Preserving Software for Cloud/Cloud–Shadow Detection in Multi-Sensor Single-Date Earth Observation Multi-Spectral Imagery—Part 1: Systematic ESA EO Level 2 Product Generation at the Ground Segment as Broad Context

Author:

Baraldi Andrea,Tiede DirkORCID

Abstract

The European Space Agency (ESA) defines Earth observation (EO) Level 2 information product the stack of: (i) a single-date multi-spectral (MS) image, radiometrically corrected for atmospheric, adjacency and topographic effects, with (ii) its data-derived scene classification map (SCM), whose thematic map legend includes quality layers cloud and cloud–shadow. Never accomplished to date in an operating mode by any EO data provider at the ground segment, systematic ESA EO Level 2 product generation is an inherently ill-posed computer vision (CV) problem (chicken-and-egg dilemma) in the multi-disciplinary domain of cognitive science, encompassing CV as subset-of artificial general intelligence (AI). In such a broad context, the goal of our work is the research and technological development (RTD) of a “universal” AutoCloud+ software system in operating mode, capable of systematic cloud and cloud–shadow quality layers detection in multi-sensor, multi-temporal and multi-angular EO big data cubes characterized by the five Vs, namely, volume, variety, veracity, velocity and value. For the sake of readability, this paper is divided in two. Part 1 highlights why AutoCloud+ is important in a broad context of systematic ESA EO Level 2 product generation at the ground segment. The main conclusions of Part 1 are that ESA EO Level 2 information product is regarded as: (I) necessary-but-not-sufficient pre-condition for the yet-unaccomplished dependent problems of semantic content-based image retrieval (SCBIR) and semantics-enabled information/knowledge discovery (SEIKD) in multi-source EO big data cubes, where SCBIR and SEIKD are part-of the GEO-CEOS visionary goal of a yet-unaccomplished Global EO System of Systems (GEOSS). (II) State-of-the-art definition of EO Analysis Ready Data (ARD) format. (III) Horizontal policy, the goal of which is background developments, in a “seamless chain of innovation” needed for a new era of Space Economy 4.0. In the subsequent Part 2, the AutoCloud+ software system requirements specification, information/knowledge representation, system design, algorithm, implementation and preliminary experimental results are presented and discussed.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference180 articles.

1. Reflectance quantities in optical remote sensing—definitions and case studies

2. Quantitative Remote Sensing of Land Surfaces;Liang,2004

3. A Quality Assurance Framework for Earth Observation, Version 4.0http://qa4eo.org/docs/QA4EO_Principles_v4.0.pdf

4. Big Data and cloud computing: innovation opportunities and challenges

5. The Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Planhttp://www.earthobservations.org/docs/10-Year%20Implementation%20Plan.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3