Modelling and Laboratory Tests of the Temperature Influence on the Efficiency of the Energy Harvesting System Based on MFC Piezoelectric Transducers

Author:

Płaczek Marek,Kokot GrzegorzORCID

Abstract

Macro Fibre Composites (MFC) are very effective piezoelectric transducers that, among others, can be used as elements of energy harvesting systems. The possibility to generate electric energy, for example, from mechanical vibrations in order to power electrical elements that could not be powered in another way (using wires or batteries) is a great solution. However, such a kind of systems has to be designed by considering all phenomena that could occur during the exploitation of the system. One of those phenomena is the temperature fluctuation during the device operation. In the presented research work, a mathematical model of the energy harvesting system based on MFC transducers is proposed. The mathematical model was validated by laboratory tests conducted on a laboratory stand equipped with a universal mechanical testing machine (Instron Electropuls 10000) and a thermal chamber. During the tests, the samples were subjected to cyclic excitation simulating the operation of the system in various environmental conditions by forcing changes in the system operation temperature with the constant conditions of its excitation.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3