Neural Network Approaches for Mobile Spectroscopic Gamma-Ray Source Detection

Author:

Bilton Kyle J.ORCID,Joshi Tenzing H. Y.ORCID,Bandstra Mark S.ORCID,Curtis Joseph C.ORCID,Hellfeld DanielORCID,Vetter KaiORCID

Abstract

Artificial neural networks (ANNs) for performing spectroscopic gamma-ray source identification have been previously introduced, primarily for applications in controlled laboratory settings. To understand the utility of these methods in scenarios and environments more relevant to nuclear safety and security, this work examines the use of ANNs for mobile detection, which involves highly variable gamma-ray background, low signal-to-noise ratio measurements, and low false alarm rates. Simulated data from a 2” × 4” × 16” NaI(Tl) detector are used in this work for demonstrating these concepts, and the minimum detectable activity (MDA) is used as a performance metric in assessing model performance.In addition to examining simultaneous detection and identification, binary spectral anomaly detection using autoencoders is introduced in this work, and benchmarked using detection methods based on Non-negative Matrix Factorization (NMF) and Principal Component Analysis (PCA). On average, the autoencoder provides a 12% and 23% improvement over NMF- and PCA-based detection methods, respectively. Additionally, source identification using ANNs is extended to leverage temporal dynamics by means of recurrent neural networks, and these time-dependent models outperform their time-independent counterparts by 17% for the analysis examined here. The paper concludes with a discussion on tradeoffs between the ANN-based approaches and the benchmark methods examined here.

Funder

U.S. Department of Homeland Security

Lawrence Berkeley National Laboratory

Publisher

MDPI AG

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning framework for predicting uranium enrichments from M400 CZT gamma spectra;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-11

2. Hybrid convolutional neural network approach for optimizing automatic identification of natural isotopes in gamma ray environmental sample spectra;Neural Computing and Applications;2024-08-07

3. Predicting element concentrations by machine learning models in neutron activation analysis;Journal of Radioanalytical and Nuclear Chemistry;2024-03-07

4. Machine Learning technique for isotopic determination of radioisotopes using HPGe γ-ray spectra;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-09

5. Synergism of Fuzzy Numbers and Data Smoothing for Abrupt Change Detection in Gamma-Ray Measurements;2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA);2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3