TBRNet: Two-Stream BiLSTM Residual Network for Video Action Recognition

Author:

Wu XiaoORCID,Ji QinggeORCID

Abstract

Modeling spatiotemporal representations is one of the most essential yet challenging issues in video action recognition. Existing methods lack the capacity to accurately model either the correlations between spatial and temporal features or the global temporal dependencies. Inspired by the two-stream network for video action recognition, we propose an encoder–decoder framework named Two-Stream Bidirectional Long Short-Term Memory (LSTM) Residual Network (TBRNet) which takes advantage of the interaction between spatiotemporal representations and global temporal dependencies. In the encoding phase, the two-stream architecture, based on the proposed Residual Convolutional 3D (Res-C3D) network, extracts features with residual connections inserted between the two pathways, and then the features are fused to become the short-term spatiotemporal features of the encoder. In the decoding phase, those short-term spatiotemporal features are first fed into a temporal attention-based bidirectional LSTM (BiLSTM) network to obtain long-term bidirectional attention-pooling dependencies. Subsequently, those temporal dependencies are integrated with short-term spatiotemporal features to obtain global spatiotemporal relationships. On two benchmark datasets, UCF101 and HMDB51, we verified the effectiveness of our proposed TBRNet by a series of experiments, and it achieved competitive or even better results compared with existing state-of-the-art approaches.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3