Prediction of BOD Concentration in Wastewater Treatment Process Using a Modular Neural Network in Combination with the Weather Condition

Author:

Li Wenjing,Zhang Junkai

Abstract

Since weather has a huge impact on the wastewater treatment process (WWTP), the prediction accuracy for the Biochemical Oxygen Demand (BOD) concentration in WWTP would degenerate if using only one single artificial neural network as the model for soft measurement method. Aiming to solve this problem, the present study proposes a novel hybrid scheme using a modular neural network (MNN) combining with the factor of weather condition. First, discriminative features among different weather groups are selected to ensure a high accuracy for sample clustering based on weather conditions. Second, the samples are clustered based on a density-based clustering algorithm using the discriminative features. Third, the clustered samples are input to each module in MNN, with the auxiliary variables correlated with BOD prediction input to the corresponding model. Finally, a constructive radial basis function neural network with the error-correction algorithm is used as the model for each subnetwork to predict BOD concentration. The proposed scheme is evaluated on a standard wastewater treatment platform—Benchmark Simulation Model 1 (BSM1). Experimental results demonstrate the performance improvement of the proposed scheme on the prediction accuracy for BOD concentration in WWTP. Besides, the training time is shortened and the network structure is compact.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3