Hyperspectral Imaging for Minced Meat Classification Using Nonlinear Deep Features

Author:

Ayaz HamailORCID,Ahmad MuhammadORCID,Mazzara ManuelORCID,Sohaib Ahmed

Abstract

Minced meat substitution is one of the most common forms of food fraud in the meat industry. Recently, Hyperspectral Imaging (HSI) has been used for the classification and identification of minced meat types. However, conventional methods are based only on spectral information and ignore the spatial variability of the data. Moreover, these methods first tend to reduce the size of the data, which to some extent ignores the abstract level information and does not preserve the spatial information. Therefore, this work proposes a novel Isos-bestic wavelength reduction method for the different minced meat types, by retaining only Myoglobin pigments (Mb) in the meat spectra. A total of 60 HSI cubes are acquired using Fx 10 Hyperspectral sensor. For each HSI cube, a set of preprocessing schemes is applied to extract the Region of Interest (ROI) and spectral preprocessing, i.e., Golay filtering. Later, these preprocessed HSI cubes are fed into a 3D-Convolutional Neural Network (3D-CNN) model for nonlinear feature extraction and classification. The proposed pipeline outperformed several state-of-the-art methods, with an overall accuracy of 94.0%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3