Author:
Yang Yun,Wang Jiacheng,Liu Tianyuan,Lv Xiaolei,Bao Jinsong
Abstract
As an indispensable part of workshops, the normalization of workers’ manufacturing processes is an important factor that affects product quality. How to effectively supervise the manufacturing process of workers has always been a difficult problem in intelligent manufacturing. This paper proposes a method for action detection and process evaluation of workers based on a deep learning model. In this method, the human skeleton and workpiece features are separately obtained by the monitoring frame and then input into an action detection network in chronological order. The model uses two inputs to predict frame-by-frame classification results, which are then merged into a continuous action flow, and finally, input into the action flow evaluation network. The network effectively improves the ability to evaluate action flow through the attention mechanism of key actions in the process. The experimental results show that our method can effectively recognize operation actions in workshops, and can evaluate the manufacturing process with 99% accuracy using the experimental verification dataset.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning Algorithms for 3D Reconstruction;Encyclopedia of Computer Graphics and Games;2024
2. Deep Learning Algorithms for 3D Reconstruction;Encyclopedia of Computer Graphics and Games;2023