Author:
Jerouschek Daniel,Tan Ömer,Kennel Ralph,Taskiran Ahmet
Abstract
Voltage models of lithium-ion batteries (LIB) are used to estimate their future voltages, based on the assumption of a specific current profile, in order to ensure that the LIB remains in a safe operation mode. Data of measurable physical features—current, voltage and temperature—are processed using both over- and undersampling methods, in order to obtain evenly distributed and, therefore, appropriate data to train the model. The trained recurrent neural network (RNN) consists of two long short-term memory (LSTM) layers and one dense layer. Validation measurements over a wide power and temperature range are carried out on a test bench, resulting in a mean absolute error (MAE) of 0.43 V and a mean squared error (MSE) of 0.40 V2. The raw data and modeling process can be carried out without any prior knowledge of LIBs or the tested battery. Due to the challenges involved in modeling the state-of-charge (SOC), measurements are used directly to model the behavior without taking the SOC estimation as an input feature or calculating it in an intermediate step.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献