Maximum Marginal Approach on EEG Signal Preprocessing for Emotion Detection

Author:

Li Gen,Jung Jason J.ORCID

Abstract

Emotion detection is an important research issue in electroencephalogram (EEG). Signal preprocessing and feature selection are parts of feature engineering, which determines the performance of emotion detection and reduces the training time of the deep learning models. To select the efficient features for emotion detection, we propose a maximum marginal approach on EEG signal preprocessing. The approach selects the least similar segments between two EEG signals as features that can represent the difference between EEG signals caused by emotions. The method defines a signal similarity described as the distance between two EEG signals to find the features. The frequency domain of EEG is calculated by using a wavelet transform that exploits a wavelet to calculate EEG components in a different frequency. We have conducted experiments by using the selected feature from real EEG data recorded from 10 college students. The experimental results show that the proposed approach performs better than other feature selection methods by 17.9% on average in terms of accuracy. The maximum marginal approach-based models achieve better performance than the models without feature selection by 21% on average in terms of accuracy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of convolutional features and machine learning for predicting student academic performance from MOODLE data;PLOS ONE;2023-11-08

2. Spatial Encoding of EEG Brain Wave Signals to Predict Student’s Mental State During E-Learning;2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP);2023-09-17

3. OnE: An EEG-based Passive BCI framework for Monitoring Cognitive States During online learning;Advances In Robotics - 6th International Conference of The Robotics Society;2023-07-05

4. A Review on Preprocessing of EEG Signal;2023 International Conference on Bio Signals, Images, and Instrumentation (ICBSII);2023-03-16

5. Modeling EEG Signals for Mental Confusion Using DNN and LSTM With Custom Attention Layer;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3