Assessment of Hybrid Wind-Wave Energy Resource for the NW Coast of Iberian Peninsula in a Climate Change Context

Author:

Ribeiro AmericoORCID,Costoya Xurxo,de Castro MaiteORCID,Carvalho DavidORCID,Dias Joao MiguelORCID,Rocha AlfredoORCID,Gomez-Gesteira Moncho

Abstract

Offshore renewable energy has a high potential for ensuring the successful implementation of the European decarbonization agenda planned for the near future. Hybrid wind-wave farms can reduce installation and maintenance costs, and increase the renewable energy availability of a location by compensating for the wind’s intermittent nature with good wave conditions. In addition, wave farms can provide protection to wind farms, and the combined wind/wave farm can provide coastal protection. This work aims to assess the future hybrid wind-wave energy resource for the northwest coast of Iberian Peninsula for the near future (2026–2045), under the RCP 8.5 greenhouse gas emission scenario. This assessment was accomplished by applying a Delphi classification method to define four categories, aiming to evaluate the richness (wind and wave energy availability, downtime), the variability (temporal variation), the environmental risk (extreme events), and cost parameters (water depth and distance to coast) of the wind and wave resources. The combined index (CI), which classifies the hybrid wind-wave resource, shows that most of the NW Iberian Peninsula presents good conditions (CI > 0.6) for exploiting energy from wind and wave resources simultaneously. Additionally, there are some particularly optimal areas (CI > 0.7), such as the region near Cape Roca, and the Galician coast.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference67 articles.

1. United Nations—Climate Action https://www.un.org/en/climatechange/

2. Regulation Of The European Parliament And Of The Council Establishing The Framework For Achieving Climate Neutrality And Amending Regulation (EU) 2018/1999 (European Climate Law),2020

3. Strategic Research and Innovation Agenda for Ocean Energy,2020

4. Temporary Working Group Ocean Energy,2018

5. Ocean Energy Strategic Roadmap: Building Ocean Energy for Europe,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3