Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach

Author:

Abejón Ricardo,Fernández-Ríos Ana,Domínguez-Ramos Antonio,Laso Jara,Ruiz-Salmón Israel,Yáñez María,Ortiz Alfredo,Gorri DanielORCID,Donzel Nicolas,Jones Deborah,Irabien AngelORCID,Ortiz Inmaculada,Aldaco Rubén,Margallo María

Abstract

Fossil fuels are being progressively substituted by a cleaner and more environmentally friendly form of energy, where hydrogen fuel cells stand out. However, the implementation of a competitive hydrogen economy still presents several challenges related to economic costs, required infrastructures, and environmental performance. In this context, the objective of this work is to determine the environmental performance of the recovery of hydrogen from industrial waste gas streams to feed high-temperature proton exchange membrane fuel cells for stationary applications. The life-cycle assessment (LCA) analyzed alternative scenarios with different process configurations, considering as functional unit 1 kg of hydrogen produced, 1 kWh of energy obtained, and 1 kg of inlet flow. The results make the recovery of hydrogen from waste streams environmentally preferable over alternative processes like methane reforming or coal gasification. The production of the fuel cell device resulted in high contributions in the abiotic depletion potential and acidification potential, mainly due to the presence of platinum metal in the anode and cathode. The design and operation conditions that defined a more favorable scenario are the availability of a pressurized waste gas stream, the use of photovoltaic electricity, and the implementation of an energy recovery system for the residual methane stream.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3