A Review of Video Object Detection: Datasets, Metrics and Methods

Author:

Zhu Haidi,Wei HaoranORCID,Li BaoqingORCID,Yuan Xiaobing,Kehtarnavaz Nasser

Abstract

Although there are well established object detection methods based on static images, their application to video data on a frame by frame basis faces two shortcomings: (i) lack of computational efficiency due to redundancy across image frames or by not using a temporal and spatial correlation of features across image frames, and (ii) lack of robustness to real-world conditions such as motion blur and occlusion. Since the introduction of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2015, a growing number of methods have appeared in the literature on video object detection, many of which have utilized deep learning models. The aim of this paper is to provide a review of these papers on video object detection. An overview of the existing datasets for video object detection together with commonly used evaluation metrics is first presented. Video object detection methods are then categorized and a description of each of them is stated. Two comparison tables are provided to see their differences in terms of both accuracy and computational efficiency. Finally, some future trends in video object detection to address the challenges involved are noted.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Droplet Detection for Agricultural Spraying Systems: A Deep Learning Approach;Machine Learning and Knowledge Extraction;2024-01-26

2. Near-Edge Computing Aware Object Detection: A Review;IEEE Access;2024

3. Real-Time Robust Video Object Detection System Against Physical-World Adversarial Attacks;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024-01

4. Impact of ISP Tuning on Object Detection;Journal of Imaging;2023-11-24

5. Automatic tooth instance segmentation and identification from panoramic X-Ray images using deep CNN;Multimedia Tools and Applications;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3