Biomass Dynamics in a Fragment of Brazilian Tropical Forest (Caatinga) over Consecutive Dry Years

Author:

Campos Diego A.ORCID,Andrade Eunice M.,Castanho Andréa D. A.ORCID,Feitosa Ramon C.,Palácio Helba Q. A.

Abstract

Increases in water scarcity due to climate change, especially in dry regions, can affect the dynamics of successional species. In view of the longest sequence of dry years (2010–2019) to have occurred in the Brazilian semi-arid region, with a consequent reduction in water availability, the influence of rainfall distribution on the production of above-ground plant biomass was investigated in a Dry Tropical Forest (DTF). This natural change monitoring experiment was conducted over 11 years (2009–2019) in a fragment of DTF under regeneration for 40 years, in the district of Iguatu, Ceará, Brazil. All living individuals of the woody component with a Diameter at Ground Level (DGL) ≥3 cm and a height (h) ≥100 cm were measured during 2009–2010, 2015–2016, 2018–2019. Biomass production was calculated using an allometric equation defined for DTF species. A mean mortality rate of 134 ind. ha−1 yr−1 was registered, with a recruitment of 39 ind. ha−1 yr−1, generating a mean deficit of 95 ind. ha−1 yr−1. The mean reduction in biomass was 3.26 Mg ha−1 yr−1. Climate conditions during consecutive dry years have a direct effect on the mortality and recruitment of woody species, with a recruitment/mortality ratio of 0.11. Shrubby-tree individuals of smaller diameter showed less resilience to the cumulative effect of drought.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programme of Work on Dry and Subhumid Lands https://www.unep-wcmc.org/system/dataset_file_fields/files/000/000/323/original/dryland_report_final_HR.pdf?1439378321

2. Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests

3. Accelerated dryland expansion under climate change

4. The extent of forest in dryland biomes

5. Long-term variation of precipitation indices in Ceará State, Northeast Brazil

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3