Gaussian Mixture Models for Detecting Sleep Apnea Events Using Single Oronasal Airflow Record

Author:

ElMoaqet HishamORCID,Kim JungyoonORCID,Tilbury DawnORCID,Ramachandran Satya KrishnaORCID,Ryalat MutazORCID,Chu Chao-HsienORCID

Abstract

Sleep apnea is a common sleep-related disorder that significantly affects the population. It is characterized by repeated breathing interruption during sleep. Such events can induce hypoxia, which is a risk factor for multiple cardiovascular and cerebrovascular diseases. Polysomnography, the gold standard, is expensive, inaccessible, uncomfortable and an expert technician is needed to score sleep-related events. To address these limitations, many previous studies have proposed and implemented automatic scoring processes based on fewer sensors and machine learning classification algorithms. However, alternative device technologies developed for both home and hospital still have limited diagnostic accuracy for detecting apnea events even though many of the previous investigational algorithms are based on multiple physiological channel inputs. In this paper, we propose a new probabilistic algorithm based on (only) oronasal respiration signal for automated detection of apnea events during sleep. The proposed model leverages AASM recommendations for characterizing apnea events with respect to dynamic changes in the local respiratory airflow baseline. Unlike classical threshold-based classification models, we use a Gaussian mixture probability model for detecting sleep apnea based on the posterior probabilities of the respective events. Our results show significant improvement in the ability to detect sleep apnea events compared to a rule-based classifier that uses the same classification features and also compared to two previously published studies for automated apnea detection using the same respiratory flow signal. We use 96 sleep patients with different apnea severity levels as reflected by their Apnea-Hypopnea Index (AHI) levels. The performance was not only analyzed over obstructive sleep apnea (OSA) but also over other types of sleep apnea events including central and mixed sleep apnea (CSA, MSA). Also the performance was comprehensively analyzed and evaluated over patients with varying disease severity conditions, where it achieved an overall performance of TPR=88.5%, TNR=82.5%, and AUC=86.7%. The proposed approach contributes a new probabilistic framework for detecting sleep apnea events using a single airflow record with an improved capability to generalize over different apnea severity conditions

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3