Abstract
Background: Early accurate detection of coronary artery disease (CAD) is one of the most important medical research areas. Researchers are motivated to utilize machine learning techniques for quick and accurate detection of CAD. Methods: To obtain the high quality of features used for machine learning, we here extracted the coronary bifurcation features from the coronary computed tomography angiography (CCTA) images by using the morphometric method. The machine learning classifier algorithms, such as logistic regression (LR), decision tree (DT), linear discriminant analysis (LDA), k-nearest neighbors (k-NN), artificial neural network (ANN), and support vector machine (SVM) were applied for estimating the performance by using the measured features. Results: The results showed that in comparison with other machine learning methods, the polynomial-SVM with the use of the grid search optimization method had the best performance for the detection of CAD and had yielded the classification accuracy of 100.00%. Among six examined coronary bifurcation features, the exponent of vessel diameter (n) and the area expansion ratio (AER) were two key features in the detection of CAD. Conclusions: This study could aid the clinicians to detect CAD accurately, which may probably provide an alternative method for the non-invasive diagnosis in clinical.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献