Gas Heating Mechanisms in Atmospheric Pressure Helium Dielectric-Barrier Discharges Driven by a kHz Power Source

Author:

Lin Kun-MoORCID,Wang Kai-Cheng,Chang Yao-Sheng,Chuang Shun-Yu

Abstract

The present work investigates contributions of different heating mechanisms and power efficiency of atmospheric-pressure helium dielectric-barrier discharges (APHeDBDs) containing a small amount of N2 for temperature measurements by developing the numerical methodology combining the one-dimensional (1D) plasma fluid model (PFM) and 3D gas flow model (GFM) with simulated results validated by measurements including the discharge power consumption and temperature distribution. The discharge dynamics are modeled by the 1D PFM for evaluating the average heating source considering elastic collision, ion Joule heating, and exothermic reactions as the source term of energy equation solved in the 3D GFM. The simulated current density reaches 29 A m−2 which is close to that measured as 35 A m−2. The simulated power consumption is 2.0 W which is in good agreement with the average measured power consumption as 2.1 W. The simulated average gas temperature in the reactive zone is around 346 K which is also close to the rotational temperature determined. The analysis shows that elastic collision and ion Joule heating are dominant heating mechanisms contributing 23.9% and 65.8% to the heating source, respectively. Among ion species, N2+ and N4+ are dominant species contributing 44.1% and 50.7% to the heating source of ion Joule heating, respectively. The simulated average total heating source is around 5.6 × 105 W m−3 with the maximum reaching 3.5 × 106 W m−3 in the sheath region due to the contribution of ion Joule heating.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3