Intracranial Hemorrhage Detection in Head CT Using Double-Branch Convolutional Neural Network, Support Vector Machine, and Random Forest

Author:

Sage AgataORCID,Badura PawelORCID

Abstract

Brain hemorrhage is a severe threat to human life, and its timely and correct diagnosis and treatment are of great importance. Multiple types of brain hemorrhage are distinguished depending on the location and character of bleeding. The main division covers five subtypes: subdural, epidural, intraventricular, intraparenchymal, and subarachnoid hemorrhage. This paper presents an approach to detect these intracranial hemorrhage types in computed tomography images of the head. The model trained for each hemorrhage subtype is based on a double-branch convolutional neural network of ResNet-50 architecture. It extracts features from two chromatic representations of the input data: a concatenation of the image normalized in different intensity windows and a stack of three consecutive slices creating a 3D spatial context. The joint feature vector is passed to the classifier to produce the final decision. We tested two tools: the support vector machine and the random forest. The experiments involved 372,556 images from 11,454 CT series of 9997 patients, with each image annotated with labels related to the hemorrhage subtypes. We validated deep networks from both branches of our framework and the model with either of two classifiers under consideration. The obtained results justify the use of a combination of double-source features with the random forest classifier. The system outperforms state-of-the-art methods in terms of F1 score. The highest detection accuracy was obtained in intraventricular (96.7%) and intraparenchymal hemorrhages (93.3%).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3