Exceeding the Applicability Limit of Aerogel Super Insulation Materials in Different Environmental Conditions

Author:

Lakatos ÁkosORCID

Abstract

Newly designed and constructed buildings are subjected to increasingly strict regulations which emphasize the minimization and, where possible, the elimination of wasteful energy consumption, thus resulting in a decrease in emissions. Thermal insulation materials have an important role in making better use of the primary energy delivered to consumer systems, be it by an industrial process or building services systems or in residential and commercial buildings. It is well declared that buildings account for about 30% of total energy consumption, while they contribute to about 20% of greenhouse gas emissions. High-performance insulation has great potential to achieve the European Commission’s ambitious goals for reducing the thermal loss of buildings. A new class of super insulation materials (SIMs) could play an important role in the future of insulations (e.g., fiber-reinforced silica aerogel). This material is grouped with super insulation materials by the sixty-fifth annex of the International Energy Agency. However, due to their short presence on the market, we do not know much about their long-term performance, and if their properties change with time, the question is how and in which direction they do. This is why their artificial aging is so important through thermal annealing, in addition to exposing them to high humidity and low temperatures. In this paper, the application of measurement results after the artificial aging of fiber-reinforced silica aerogel will be discussed. In order to see the changes in the thermal insulation capability of the materials, 13 different cases of environmental exposures are discussed. These cases will be presented to see possible changes in the thermal insulation performance of the aerogel after treating it in different climatic conditions. Firstly, samples were exposed to humidity treatments at 296 K with different relative humidities (0, 35, 50, 65, 80 and 90%) until they reached equilibrium moisture contents. Secondly, the samples were heat treated once for 6 weeks at 343 K, then for 1 day at 373, 423, 453 and 483 K. Moreover, we wanted to see the effects of frost, and thus we executed a freeze–thaw cycle on the samples for 25 days between 258 and 303 K. After these curing procedures, the thermal conductivities of the samples were measured with a heat flow meter, according to the ISO 8301 standard. The measured thermal conductivity values after heat treatment, wetting and freezing were used for building energetics calculations, with a special focus on the thermal transmittance of two different hypothetical building structures (brick- and concrete-based walls) covered with the mentioned insulation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3