Abstract
In this work, the widely-abundant, cheap, wild plant Lavandula pubescens Decne was evaluated as an adsorbent for removing Pb(II) ions from wastewater. The chemical composition of the plant was partially isolated and characterized by the corresponding techniques, including gas chromatography–mass spectrometry, gas liquid chromatography, and FTIR spectroscopy. The adsorption capacity of the dried plant material for Pb(II) ions increased with increasing contact time, initial ion concentration, and temperature, while it decreased with increasing adsorbent dosage. The optimum condition for Pb(II) adsorption was determined as 550 mg/L initial metal concentration, pH ≤ 7, and 90 min of contact. The best fit for Pb(II) adsorption isotherms was the linear form of the Freundlich model; however, the maximum capacity indicated by Langmuir was 91.32 mg/g. The experimental data fit better the pseudo-second-order kinetic model (R2 = 0.969), suggesting chemisorption process. Thermodynamic data revealed an endothermic, nonspontaneous, and adsorption process favored at higher concentrations.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献