Evaluation of the Effect of the Microscopic Glass Surface Protonation on the Hard Tissue Thin Section Preparation

Author:

Szalóki Melinda,Hegedűs Viktória,Fodor TamásORCID,Martos Renáta,Radics Tünde,Hegedűs CsabaORCID,Dezső Balázs

Abstract

In this study, a new procedure for mounting tissue blocks was described while cutting and grinding the section remains tightly bound to the inert glass surface both chemically and micro mechanically allowing good quality specimens for staining and microscopic analysis. The micromechanical interlocking was achieved by using of frosted glass, the chemical binding was made with 10-methacryloyloxydecyl dihydrogen phosphate monomer (10-MDP) containing bond material. The glass surface activation was achieved by nitric acid etching and the surface was characterized by zeta potential, X-ray photoelectron spectroscopy (XPS), and contact angle measurements. Cylindrical samples were prepared from epoxy embedding materials, cortical bovine bone, and dental titanium to investigate the shear bond strengths (SBS) to microscopic glass slide compared to a routinely used thermoplastic adhesive. Based on the experiments it was found that the micromechanical retention combined with MDP containing bond material improved the SBS data compared to the thermoplastic adhesive. The acid etched glass became positively charged that significantly increased the SBS data of bone and titanium compared with the uncharged version. Therefore, the thickness of the undecalcified bone section with metal can safely reduce to improve histological microscopic analysis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3