Heavy Metal Immobilization Studies and Enhancement in Geotechnical Properties of Cohesive Soils by EICP Technique

Author:

Moghal Arif Ali BaigORCID,Lateef Mohammed Abdul,Abu Sayeed Mohammed SyedORCID,Ahmad MunirORCID,Usman Adel R.A.,Almajed AbdullahORCID

Abstract

Soil treatment methods to cope with ever-growing demands of construction industry and environmental aspects are always explored for their suitability in different in-situ conditions. Of late, enzyme induced calcite precipitation (EICP) is gaining importance as a reliable technique to improve soil properties and for contaminant remediation scenarios. In the present work, swelling and permeability characteristics of two native Indian cohesive soils (Black and Red) are explored. Experiments on the sorption and desorption of multiple heavy metals (Cd, Ni and Pb) onto these soils were conducted to understand the sorptive response of the heavy metals. To improve the heavy metal retention capacity and enhance swelling and permeability characteristics, the selected soils were treated with different enzyme solutions. The results revealed that EICP technique could immobilize the heavy metals in selected soils to a significant level and reduce the swelling and permeability. This technique is contaminant selective and performance varies with the nature and type of heavy metal used. Citric acid (C6H8O7) and ethylene diamine tetra-acetic acid (EDTA) were used as extractants in the present study to study the desorption response of heavy metals for different EICP conditions. The results indicate that calcium carbonate (CaCO3) precipitate deposited in the voids of soil has the innate potential in reducing the permeability of soil up to 47-fold and swelling pressure by 4-fold at the end of 21 days of curing period. Reduction in permeability and swell, following EICP treatment can be maintained with one time rinsing of the treated soil in water to avoid dissolution of precipitated CaCO3. Outcomes of this study have revealed that EICP technique can be adopted on selected native soils to reduce swelling and permeability characteristics followed by enhanced contaminant remediation enabling their potential as excellent landfill liner materials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3