Abstract
A new design of quaternary inverter (QNOT gate) is proposed by means of finite-element simulation. Traditionally, increasing the number of data levels in digital logic circuits was achieved by increasing the number of transistors. Our QNOT gate consists of only two transistors, resembling the binary complementary metal-oxide-semiconductor (CMOS) inverter, yet the two additional levels are generated by controlling the charge-injection barrier and electrode overlap. Furthermore, these two transistors are stacked vertically, meaning that the entire footprint only consumes the area of one single transistor. We explore several key geometrical and material parameters in a series of simulations to show how to systematically modulate and optimize the quaternary logic behaviors.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献