Abstract
Thulium fiber laser with a wavelength of 1.94 µm is widely used in urology for lithotripsy. This paper studies the mechanism of lithotripsy and evaluates its clinical efficiency using the superpulse thulium fiber laser with a wavelength of 1.94 µm and a peak power of 500 W. An experimental setup was developed to study the mechanism of lithotripsy. The superpulse thulium fiber laser (TFL) with a wavelength of 1.94 µm with a peak power of 500 W (FiberLase U2 from “IRE-POLUS” Ltd., Fryazino, Moscow Region, Russia) was used for the lithotripsy of stone phantoms (BegoStone). The processes were recorded with a high-speed camera. The acoustic signals registered during lithotripsy were studied with wideband and needle hydrophones. The main mechanism of lithotripsy performed by using superpulse TFL was thermal cavitation in the water-filled pore space and thermal destruction of the phantom. During the clinical application of the superpulse thulium fiber laser, the high efficiency of laser lithotripsy was established. The performed optical and acoustic studies showed that the mechanism of the destruction of stones was based on the synergic effect of the explosive boiling of water in the pore space of the stone, and its thermal destruction is associated with the heating of the stone to several hundred degrees with laser radiation.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference36 articles.
1. Novel technologies in flexible ureterorenoscopy
2. The Evaluation of Laser Application in Surgery: A Review Article
3. Laser lithotripsy;Platonova;Urologiia,1999
4. Calculus fragmentation in laser lithotripsy;Welch;Minerva Urol. Nefrol.,2004
5. Guidelines on Urolithiasis. European Association of Urologyhttps://uroweb.org/guideline/urolithiasis/
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献