Influence of Hot Carrier and Thermal Components on Photovoltage Formation across the p–n Junction

Author:

Gradauskas JonasORCID,Ašmontas SteponasORCID,Sužiedėlis Algirdas,Šilėnas Aldis,Vaičikauskas Viktoras,Čerškus Aurimas,Širmulis Edmundas,Žalys Ovidijus,Masalskyi OleksandrORCID

Abstract

In the present work we reveal the existence of the hot carrier photovoltage induced across a p–n junction in addition to the classical carrier generation-induced and thermalization-caused photovoltages. On the basis of the solution of the differential equation of the first-order linear time-invariant system, we propose a model enabling to disclose the pure value of each photovoltage component. The hot carrier photovoltage is fast since it is determined by the free carrier energy relaxation time (which is of the order of 10−12 s), while the thermal one, being conditioned by the junction temperature change, is relatively slow; and both of them have a sign opposite to that of the electron-hole pair generation-induced component. Simultaneous coexistence of the components is evidenced experimentally in GaAs p–n junction exposed to pulsed 1.06 μm laser light. The work is remarkable in two ways: first, it shows that creation of conditions unfavorable for the rise of hot carrier photovoltage might improve the efficiency of a single junction solar cell, and second, it should inspire the photovoltaic society to revise the Shockley–Queisser limit by taking into account the damaging impact of the hot carrier photovoltage.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3