Cyrene™, a Sustainable Solution for Graffiti Paint Removal

Author:

Milescu Roxana A.1,Farmer Thomas J.2ORCID,Sherwood James2ORCID,McElroy Con R.13,Clark James H.1

Affiliation:

1. Circa Renewable Chemistry Institute, Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO105DD, North Yorkshire, UK

2. Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO105DD, North Yorkshire, UK

3. Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7DL, Lincolnshire, UK

Abstract

Graffiti can create detrimental aesthetic and environmental damage to city infrastructure and cultural heritage and requires improved removal methods. Incumbent laser, mechanical and chemical removal techniques are often not effective, are expensive or damage the substrate. Solvents are generally hazardous and not always effective because of the insolubility of the graffiti paint. This study proposes a simple strategy for safe and effective graffiti removal, using the bio-based, non-toxic and biodegradable solvent dihydrolevoglucosenone (Cyrene™). The results showed that the type of substrate influenced the cleaning performance; in benchmark studies a non-porous substrate was easy to clean, while porous ceramic showed the presence of residual paint and yellowing when the conventional polar aprotic solvents were used. Cyrene, however, showed good removability of graffiti paint from both glazed and porous substrates, with little paint remaining in the pores of ceramic tiles. The paint suffered a reversible change in colour and a selective solubility of its components when using N-methyl-2-pyrrolidone; no changes occurred when Cyrene was used. While N-methyl-2-pyrrolidone and N,N′-dimethylformamide were only effective when neat, a Cyrene–water mixture showed some cleaning results. The performance of Cyrene was validated with Hansen solubility parameters and represents a greener and more sustainable solvent for paint removal.

Funder

Circa Group

Publisher

MDPI AG

Subject

General Medicine

Reference58 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3