Soil Organic Carbon Pools and Associated Soil Chemical Properties under Two Pine Species (Pinus sylvestris L. and Pinus nigra Arn.) Introduced on Reclaimed Sandy Soils

Author:

Woś BartłomiejORCID,Pająk MarekORCID,Pietrzykowski MarcinORCID

Abstract

The roles of different tree species and their impacts are key in assessing the dynamics of soil restoration in afforested post-mining sites. The objective of this study was to compare the effect of Scots pine (Pinus sylvestris L.), which is native to Central Europe and commonly used in afforestation, to that of the non-native black pine (Pinus nigra Arn.) on the development of carbon pools and the chemical properties of reclaimed soils after sand exploitation. The study was carried out in 20- and 35-year-old stands, and the results were compared to undisturbed forest sites. Samples of the litter horizon and mineral soils (0–5 and 5–20 cm) were analyzed for pH, soil organic carbon (SOC), and total nitrogen (Nt). In addition, electrical conductivity (EC), sorption complex properties, water-soluble carbon, and hot-water-extractable carbon were determined from the mineral soil samples. Scots and black pine had a similar effect on the properties of the reclaimed soils. However, the soils under Scots pine were characterized by lower pH values in the litter and 0–5 cm horizons, higher EC in the 0–5 cm horizon, and higher C stocks in the litter horizon. Changes in the C stocks and chemical properties with afforestation years were limited to the uppermost soil horizons (litter and 0–5 cm). For both pine species, soils under the older stands were characterized by lower pH, higher EC, higher exchangeable acidity, higher cation-exchange capacity, lower base saturation, higher SOC and Nt contents, and more stable soil organic matter than soil under younger stands. After 35 years, about 20% and 27% of the C stocks in the reclaimed mine soils had been restored under black pine and Scots pine, respectively (compared to undisturbed soils). This difference between the pine species resulted from the higher C stocks in the litter horizons under Scots pine. Pedogenesis in post-mining sites after sand exploitation under pine species tended to result in more acidic and oligotrophic soils in relation to the undisturbed soils in adjacent forest ecosystems with pine.

Funder

National Science Center

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3