Abstract
Sea surface roughness (SSR) is a key physical parameter in studies of air–sea interactions and the ocean dynamics process. The SSR quantitative inversion model based on multi-angle sun glitter (SG) images has been proposed recently, which will significantly promote SSR observations through multi-angle remote-sensing platforms. However, due to the sensitivity of the sensor view angle (SVA) to SG, it is necessary to determine the optimal imaging angle and their combinations. In this study, considering the design optimization of imaging geometry for multi-angle remote-sensing platforms, we have developed an error transfer simulation model based on the multi-angle SG remote-sensing radiation transmission and SSR estimation models. We simulate SSR estimation errors at different imaging geometry combinations to evaluate the optimal observation geometry combination. The results show that increased SSR inversion accuracy can be obtained with SVA combinations of 0° and 20° for nadir- and backward-looking SVA compared with current combinations of 0° and 27.6°. We found that SSR inversion prediction error using the proposed model and actual SSR inversion error from field buoy data are correlated. These results can provide support for the design optimization of imaging geometry for multi-angle ocean remote-sensing platforms.
Funder
National Natural Science Foundation of China
Scientific Research Fund of the Second Institute of Oceanography, State Oceanic Administration
National Key Research and Development Program
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献