Nonlinear Energy Harvesting by Piezoelectric Bionic ‘M’ Shape Generating Beam Featured in Reducing Stress Concentration

Author:

Xiong Chao1,Wu Nan1ORCID,He Yuncheng1,Cai Yuan1,Zeng Xianming1,Jin Peichen1,Lai Minyi1

Affiliation:

1. Reserch Center for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou 510006, China

Abstract

Inspired by the flapping wings of seagulls during flight, a new low-cost, magnet-free, bistable piezoelectric energy harvester is proposed to obtain energy from low-frequency vibration and convert it into electrical energy and reduce fatigue damage caused by stress concentration. In order to optimize the power generation efficiency of this energy harvesting, finite element analysis and experimental tests were carried out. The results of finite element analysis and experimental results are in good agreement, and the superior performance in improving stress concentration of the energy harvester compared to the previous parabolic (bow-shaped) one using bistable technology was quantitatively analyzed using finite element simulation, with a maximum stress reduction of 32.34%. The experimental results showed that under optimal operating conditions, the maximum open-circuit voltage of the harvester was 11.5 V, and the maximum output power was 73 μW. These results indicate that this is a promising strategy, which provides a reference for collecting vibrational energy in low-frequency environments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3