Design of GPU Network-on-Chip for Real-Time Video Super-Resolution Reconstruction

Author:

Peng Zhiyong1,Du Jiang1,Qiao Yulong2

Affiliation:

1. School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. School of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Deep learning has a better output quality compared with traditional algorithms for video super-resolution (SR), but the network model needs large resources and has poor real-time performance. This paper focuses on solving the speed problem of SR; it achieves real-time SR by the collaborative design of a deep learning video SR algorithm and GPU parallel acceleration. An algorithm combining deep learning networks with a lookup table (LUT) is proposed for the video SR, which ensures both the SR effect and ease of GPU parallel acceleration. The computational efficiency of the GPU network-on-chip algorithm is improved to ensure real-time performance by three major GPU optimization strategies: storage access optimization, conditional branching function optimization, and threading optimization. Finally, the network-on-chip was implemented on a RTX 3090 GPU, and the validity of the algorithm was demonstrated through ablation experiments. In addition, SR performance is compared with existing classical algorithms based on standard datasets. The new algorithm was found to be more efficient than the SR-LUT algorithm. The average PSNR was 0.61 dB higher than the SR-LUT-V algorithm and 0.24 dB higher than the SR-LUT-S algorithm. At the same time, the speed of real video SR was tested. For a real video with a resolution of 540×540, the proposed GPU network-on-chip achieved a speed of 42 FPS. The new method is 9.1 times faster than the original SR-LUT-S fast method, which was directly imported into the GPU for processing.

Funder

Natural Science Foundation of Guangxi Province

Innovation Project of Guangxi Graduate Education

Graduate Education Innovation Program of Guilin University of Electronic Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3