Numerical Simulation and Field Monitoring of Blasting Vibration for Tunnel In-Situ Expansion by a Non-Cut Blast Scheme

Author:

Guan Zhenchang1ORCID,Xie Lifu1ORCID,Chen Dong1ORCID,Shi Jingkang1ORCID

Affiliation:

1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China

Abstract

There have been ever more in-situ tunnel extension projects due to the growing demand for transportation. The traditional blast scheme requires a large quantity of explosive and the vibration effect is hard to control. In order to reduce explosive consumption and the vibration effect, an optimized non-cut blast scheme was proposed and applied to the in-situ expansion of the Gushan Tunnel. Refined numerical simulation was adopted to compare the traditional and optimized blast schemes. The vibration attenuation within the interlaid rock mass and the vibration effect on the adjacent tunnel were studied and compared. The simulation results were validated by the field monitoring of the vibration effect on the adjacent tunnel. Both the simulation and the monitoring results showed that the vibration velocity on the adjacent tunnel’s back side was much smaller than its counterpart on the blast side, i.e., the presence of cavity reduced the blasting vibration effect significantly. The optimized non-cut blast scheme, which effectively utilized the existing free surface, could reduce the explosive consumption and vibration effect significantly, and might be preferred for in-situ tunnel expansion projects.

Funder

Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3