Use of Machine Learning in Interactive Cybersecurity and Network Education

Author:

Loftus Neil1,Narman Husnu S.1

Affiliation:

1. Department of Computer Sciences and Electrical Engineering, Marshall University, Huntington, WV 25755, USA

Abstract

Cybersecurity is a complex subject for students to pursue. Hands-on online learning through labs and simulations can help students become more familiar with the subject at security classes to pursue cybersecurity education. There are several online tools and simulation platforms for cybersecurity education. However, those platforms need more constructive feedback mechanisms, and customizable hands-on exercises for users, or they oversimplify or misrepresent the content. In this paper, we aim to develop a platform for cybersecurity education that can be used either with a user interface or command line and provide auto constructive feedback for command line practices. Moreover, the platform currently has nine levels to practice for different subjects of networking and cybersecurity and a customizable level to create a customized network structure to test. The difficulty of objectives increases at each level. Moreover, an automatic feedback mechanism is developed by using a machine learning model to warn users about their typographical errors while using the command line to practice. A trial was performed with students completing a survey before and after using the application to test the effects of auto-feedback on users’ understanding of the subjects and engagement with the application. The machine learning-based version of the application has a net increase in the user ratings of almost every survey field, such as user-friendliness and overall experience.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cybersecurity Education within a Computing Science Program - A Literature Review;The 26th Western Canadian Conference on Computing Education;2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3