Hybrid Machine Learning Optimization Approach to Predict Hot Deformation Behavior of Medium Carbon Steel Material

Author:

Murugesan Mohanraj,Sajjad Muhammad,Jung Dong Won

Abstract

The isothermal tensile test of medium carbon steel material was conducted at deformation temperatures varying from 650 to 950 ∘ C with an interval of 100 ∘ C and strain rates ranging from 0.05 to 1.0 s − 1 . In addition, the scanning electron microscopy (SEM) procedures were exploited to study about the surface morphology of medium carbon steel material. Using the experimental data, the artificial neural network (ANN) model with a back-propagation (BP) algorithm was proposed to predict the hot deformation behavior of medium carbon steel material. For model training and testing purpose, the variables such as deformation temperature, strain rate, and strain data were considered as inputs and the flow stress data were used as targets. Before running the neural network, the test data were normalized to effectively run the problem and after solving the problem, the obtained results were again converted in order to achieve the actual data. According to the predicted results, the coefficient of determination ( R 2 ) and the average absolute relative error between the predicted flow stress and the experimental data were determined as 0.999 and 1.335%, respectively. For improving the model predictability, the constrained nonlinear function based optimization procedures was adopted to obtain the best candidate selections of weights and biases. By evaluating each test conditions, it was found that the average absolute relative error based on the optimized ANN-BP model varied from 0.728% to 1.775%. Overall, the trained ANN-BP models proved to be much more efficient and accurate by means of flow stress prediction against the experimental data for all the tested conditions. These optimized results displayed that an ANN-BP model is more accurate for flow stress prediction than that of the conventional flow stress models.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3