Process Optimization on Multilayer Morphology During 316L Double-wire CMT+P Deposition Process

Author:

Wu WeiORCID,Xue Jiaxiang,Zhang ZhanhuiORCID,Ren Xianghui,Xie Bin

Abstract

Cold metal transfer (CMT) has been widely used in metal additive manufacturing for its low heat input, less splashing and high efficiency. Wire feeding speed and travelling speed are important processes that affect morphology in CMT deposition. This study optimized the forming process of 30-layer stainless-steel part deposited by double-wire and double-arc CMT plus pulse (CMT+P) process, and investigated the effect of the ratio of wire feeding speed to travelling speed on deposition morphology. The results show that asynchronous arc striking and extinguishing can improve the forming. Moreover, the deposition molding is affected by the interaction of heat input and heat accumulation. With the similar ratio of wire feeding speed to travelling speed and the similar heat input, increasing the wire feeding speed can increase the heat accumulation and the width of sample, and decrease the height. The optimum process interval of wire feeding speed to travelling speed ratio and heat input is 3.9–4.2 and 70–74.8 J/mm, respectively. Although the increasing heat accumulation makes grain coarse and slight decreases mechanical property, the highest deposition rate can be up to 5.4 kg/h, when wire feeding speed and travelling speed are 5 m/min and 120 cm/min, respectively, and the tensile strength and elongation rate of which can reach the basic standard requirements for stainless-steel forgings.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Science and Technology Project of Longyan City

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3