Towards a Safe Human–Robot Collaboration Using Information on Human Worker Activity

Author:

Orsag Luka1ORCID,Stipancic Tomislav1ORCID,Koren Leon1

Affiliation:

1. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10000 Zagreb, Croatia

Abstract

Most industrial workplaces involving robots and other apparatus operate behind the fences to remove defects, hazards, or casualties. Recent advancements in machine learning can enable robots to co-operate with human co-workers while retaining safety, flexibility, and robustness. This article focuses on the computation model, which provides a collaborative environment through intuitive and adaptive human–robot interaction (HRI). In essence, one layer of the model can be expressed as a set of useful information utilized by an intelligent agent. Within this construction, a vision-sensing modality can be broken down into multiple layers. The authors propose a human-skeleton-based trainable model for the recognition of spatiotemporal human worker activity using LSTM networks, which can achieve a training accuracy of 91.365%, based on the InHARD dataset. Together with the training results, results related to aspects of the simulation environment and future improvements of the system are discussed. By combining human worker upper body positions with actions, the perceptual potential of the system is increased, and human–robot collaboration becomes context-aware. Based on the acquired information, the intelligent agent gains the ability to adapt its behavior according to its dynamic and stochastic surroundings.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Workplace Well-Being in Industry 5.0: A Worker-Centered Systematic Review;Sensors;2024-08-23

2. Online human motion analysis in industrial context: A review;Engineering Applications of Artificial Intelligence;2024-05

3. Ontology-Based Digital Twin Framework Using Contextual Affordances for Worker Assistance in Smart Factories;Lecture Notes in Information Systems and Organisation;2024

4. Ontology-Based Digital Twin Framework for Smart Factories;Proceedings of the 31st International Conference on Information Systems Development;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3