Shifting Hydrological Processes in a Canadian Agroforested Catchment due to a Warmer and Wetter Climate

Author:

Aygün OkanORCID,Kinnard ChristopheORCID,Campeau Stéphane,Krogh Sebastian A.ORCID

Abstract

This study examines the hydrological sensitivity of an agroforested catchment to changes in temperature and precipitation. A physically based hydrological model was created using the Cold Regions Hydrological Modelling platform to simulate the hydrological processes over 23 years in the Acadie River Catchment in southern Québec. The observed air temperature and precipitation were perturbed linearly based on existing climate change projections, with warming of up to 8 °C and an increase in total precipitation up to 20%. The results show that warming causes a decrease in blowing snow transport and sublimation losses from blowing snow, canopy-intercepted snowfall and the snowpack. Decreasing blowing snow transport leads to reduced spatial variability in peak snow water equivalent (SWE) and a more synchronized snow cover depletion across the catchment. A 20% increase in precipitation is not sufficient to counteract the decline in annual peak SWE caused by a 1 °C warming. On the other hand, peak spring streamflow increases by 7% and occurs 20 days earlier with a 1 °C warming and a 20% increase in precipitation. However, when warming exceeds 1.5 °C, the catchment becomes more rainfall dominated and the peak flow and its timing follows the rainfall rather than snowmelt regime. Results from this study can be used for sustainable farming development and planning in regions with hydroclimatic characteristics similar to the Acadie River Catchment, where climate change may have a significant impact on the dominating hydrological processes.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Excellence Research Chairs, Government of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3