Evaluation of Water Quality in Ialomita River Basin in Relationship with Land Cover Patterns

Author:

Dunea DanielORCID,Bretcan Petre,Tanislav Danut,Serban Gheorghe,Teodorescu Razvan,Iordache Stefania,Petrescu Nicolae,Tuchiu Elena

Abstract

The paper reviews the state of water quality in Ialomita River Basin (IRB), Romania, between 2007 and 2018 using the land use/land cover and basin-specific conditions effects on sediments and nutrients load. On-site monitoring was performed in two control sections of the Ialomita River, one in the upper part of the basin (near Targoviste city) and the second near the discharge into the Danube (downstream of Tandarei town). The statistical averages of water parameters for 10 years’ monitoring in the control section that is close to the Ialomita River discharge in Danube were pH = 7.60 (range: 6.41–8.40), NH4-N = 1.20 mg/L (0.02–14.87), alkalinity = 4.12 mmol/L (1.34–6.27), NO3-N = 2.60 mg/L (0.08–17.30), PO4-P = 0.09 mg/L (0–0,31), dissolved oxygen (DO) = 8.87 mg/L (2.72–15.96), BOD5 = 5.50 mg/L (0.01–74.71), suspended solids (TSS) = 508.32 mg/L (15.2–4457), total dissolved salts (TDS) = 733.69 mg/L (455.2–1053), and river discharge = 38.60 m3/s (8.22–165). Expected mean concentration and soil and water assessment tool (SWAT) modeling have been employed in the GIS environment to extend the approach to large spatial patterns within the basin. The estimated average specific emission on the total area for nitrogen was 3.2 kg N/ha, and 0.3 kg P/ha for phosphorus highly influenced by the agricultural activities. The results are useful to raise awareness regarding water-quality degradation and the need to stop and even reverse such trends for local and national sustainable development.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference52 articles.

1. Towards a Worldwide Assessment of Freshwater Quality—A UN-Water Analytical Brief 2016 https://www.unwater.org/app/uploads/2017/05/UN_Water_Analytical_Brief_20161111_02_web_pages.pdf

2. Integrated Water Resources Management: Concept, Research and Implementation,2016

3. Nutrient inputs from an urbanized landscape may drive water quality degradation

4. Collective action for water quality management in agriculture: The case of drinking water source protection in France

5. The chemistry of river–lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part I. Analysis of ion and trace metal concentrations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3