Segmentation of Drilled Holes in Texture Wooden Furniture Panels Using Deep Neural Network

Author:

Augustauskas RytisORCID,Lipnickas ArūnasORCID,Surgailis Tadas

Abstract

Drilling operations are an essential part of furniture from MDF laminated boards required for product assembly. Faults in the process might introduce adverse effects to the furniture. Inspection of the drilling quality can be challenging due to a big variety of board surface textures, dust, or woodchips in the manufacturing process, milling cutouts, and other kinds of defects. Intelligent computer vision methods can be engaged for global contextual analysis with local information attention for automated object detection and segmentation. In this paper, we propose blind and through drilled holes segmentation on textured wooden furniture panel images using the UNet encoder-decoder modifications enhanced with residual connections, atrous spatial pyramid pooling, squeeze and excitation module, and CoordConv layers for better segmentation performance. We show that even a lightweight architecture is capable to perform on a range of complex textures and is able to distinguish the holes drilling operations’ semantical information from the rest of the furniture board and conveyor context. The proposed model configurations yield better results in more complex cases with a not significant or small bump in processing time. Experimental results demonstrate that our best-proposed solution achieves a Dice score of up to 97.89% compared to the baseline U-Net model’s Dice score of 94.50%. Statistical, visual, and computational properties of each convolutional neural network architecture are addressed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference70 articles.

1. Visual-Based Defect Detection and Classification Approaches for Industrial Applications—A SURVEY

2. Rethinking atrous convolution for semantic image segmentation;Chen;arXiv,2017

3. An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solutionhttps://proceedings.neurips.cc/paper/2018/file/60106888f8977b71e1f15db7bc9a88d1-Paper.pdf

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3